Influence of Sensor Feedback Limitations on Power Oscillation Damping and Transient Stability

8 Nov 2019  ·  Joakim Björk, Danilo Obradović, Lennart Harnefors, Karl Henrik Johansson ·

Fundamental sensor feedback limitations for improving rotor angle stability using local frequency or phase angle measurement are derived. Using a two-machine power system model, it is shown that improved damping of inter-area oscillations must come at the cost of reduced transient stability margins, regardless of the control design method. The control limitations stem from that the excitation of an inter-area mode by external disturbances cannot be estimated with certainty using local frequency information. The results are validated on a modified Kundur four-machine two-area test system where the active power is modulated on an embedded high-voltage dc link. Damping control using local phase angle measurements, unavoidably leads to an increased rotor angle deviation following certain load disturbances. For a highly stressed system, it is shown that this may lead to transient instability. The limitations derived in the paper may motivate the need for wide-area measurements in power oscillation damping control.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here