Information Recovery from Pairwise Measurements

6 Apr 2015Yuxin ChenChangho SuhAndrea J. Goldsmith

This paper is concerned with jointly recovering $n$ node-variables $\left\{ x_{i}\right\}_{1\leq i\leq n}$ from a collection of pairwise difference measurements. Imagine we acquire a few observations taking the form of $x_{i}-x_{j}$; the observation pattern is represented by a measurement graph $\mathcal{G}$ with an edge set $\mathcal{E}$ such that $x_{i}-x_{j}$ is observed if and only if $(i,j)\in\mathcal{E}$... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet