Information Scaling Law of Deep Neural Networks

13 Feb 2018  ·  Xiao-Yang Liu ·

With the rapid development of Deep Neural Networks (DNNs), various network models that show strong computing power and impressive expressive power are proposed. However, there is no comprehensive informational interpretation of DNNs from the perspective of information theory... Due to the nonlinear function and the uncertain number of layers and neural units used in the DNNs, the network structure shows nonlinearity and complexity. With the typical DNNs named Convolutional Arithmetic Circuits (ConvACs), the complex DNNs can be converted into mathematical formula. Thus, we can use rigorous mathematical theory especially the information theory to analyse the complicated DNNs. In this paper, we propose a novel information scaling law scheme that can interpret the network's inner organization by information theory. First, we show the informational interpretation of the activation function. Secondly, we prove that the information entropy increases when the information is transmitted through the ConvACs. Finally, we propose the information scaling law of ConvACs through making a reasonable assumption. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here