Information Theoretic Counterfactual Learning from Missing-Not-At-Random Feedback

Counterfactual learning for dealing with missing-not-at-random data (MNAR) is an intriguing topic in the recommendation literature since MNAR data are ubiquitous in modern recommender systems. Missing-at-random (MAR) data, namely randomized controlled trials (RCTs), are usually required by most previous counterfactual learning methods for debiasing learning. However, the execution of RCTs is extraordinarily expensive in practice. To circumvent the use of RCTs, we build an information-theoretic counterfactual variational information bottleneck (CVIB), as an alternative for debiasing learning without RCTs. By separating the task-aware mutual information term in the original information bottleneck Lagrangian into factual and counterfactual parts, we derive a contrastive information loss and an additional output confidence penalty, which facilitates balanced learning between the factual and counterfactual domains. Empirical evaluation on real-world datasets shows that our CVIB significantly enhances both shallow and deep models, which sheds light on counterfactual learning in recommendation that goes beyond RCTs.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here