Information-Theoretic Free Energy as Emotion Potential: Emotional Valence as a Function of Complexity and Novelty

23 Mar 2020  ·  Hideyoshi Yanagisawa ·

This study extends the mathematical model of emotion dimensions that we previously proposed (Yanagisawa, et al. 2019, Front Comput Neurosci) to consider perceived complexity as well as novelty, as a source of arousal potential. Berlyne's hedonic function of arousal potential (or the inverse U-shaped curve, the so-called Wundt curve) is assumed. We modeled the arousal potential as information contents to be processed in the brain after sensory stimuli are perceived (or recognized), which we termed sensory surprisal. We mathematically demonstrated that sensory surprisal represents free energy, and it is equivalent to a summation of information gain (or information from novelty) and perceived complexity (or information from complexity), which are the collative variables forming the arousal potential. We demonstrated empirical evidence with visual stimuli (profile shapes of butterfly) supporting the hypothesis that the summation of perceived novelty and complexity shapes the inverse U-shaped beauty function. We discussed the potential of free energy as a mathematical principle explaining emotion initiators.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here