Information-Theoretic Odometry Learning

11 Mar 2022  ·  Sen Zhang, Jing Zhang, DaCheng Tao ·

In this paper, we propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation, a crucial component of many robotics and vision tasks such as navigation and virtual reality where relative camera poses are required in real time. We formulate this problem as optimizing a variational information bottleneck objective function, which eliminates pose-irrelevant information from the latent representation. The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language. Specifically, we bound the generalization errors of the deep information bottleneck framework and the predictability of the latent representation. These provide not only a performance guarantee but also practical guidance for model design, sample collection, and sensor selection. Furthermore, the stochastic latent representation provides a natural uncertainty measure without the needs for extra structures or computations. Experiments on two well-known odometry datasets demonstrate the effectiveness of our method.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here