Information-theoretical label embeddings for large-scale image classification

19 Jul 2016  ·  François Chollet ·

We present a method for training multi-label, massively multi-class image classification models, that is faster and more accurate than supervision via a sigmoid cross-entropy loss (logistic regression). Our method consists in embedding high-dimensional sparse labels onto a lower-dimensional dense sphere of unit-normed vectors, and treating the classification problem as a cosine proximity regression problem on this sphere. We test our method on a dataset of 300 million high-resolution images with 17,000 labels, where it yields considerably faster convergence, as well as a 7% higher mean average precision compared to logistic regression.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here