Informative Outlier Matters: Robustifying Out-of-distribution Detection Using Outlier Mining

28 Sep 2020  ·  Jiefeng Chen, Yixuan Li, Xi Wu, YIngyu Liang, Somesh Jha ·

Detecting out-of-distribution (OOD) inputs is critical for safely deploying deep learning models in an open-world setting. However, existing OOD detection solutions can be brittle in the open world, facing various types of adversarial OOD inputs. While methods leveraging auxiliary OOD data have emerged, our analysis reveals a key insight that the majority of auxiliary OOD examples may not meaningfully improve the decision boundary of the OOD detector. In this paper, we provide a theoretically motivated method, Adversarial Training with informative Outlier Mining (ATOM), which improves the robustness of OOD detection. We show that, by mining informative auxiliary OOD data, one can significantly improve OOD detection performance, and somewhat surprisingly, generalize to unseen adversarial attacks. ATOM achieves state-of-the-art performance under a broad family of classic and adversarial OOD evaluation tasks. For example, on the CIFAR-10 in-distribution dataset, ATOM reduces the FPR95 by up to 57.99\% under adversarial OOD inputs, surpassing the previous best baseline by a large margin.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here