Informative Path Planning for Extreme Anomaly Detection in Environment Exploration and Monitoring

20 May 2020  ·  Antoine Blanchard, Themistoklis Sapsis ·

An unmanned autonomous vehicle (UAV) is sent on a mission to explore and reconstruct an unknown environment from a series of measurements collected by Bayesian optimization. The success of the mission is judged by the UAV's ability to faithfully reconstruct any anomalous features present in the environment, with emphasis on the extremes (e.g., extreme topographic depressions or abnormal chemical concentrations). We show that the criteria commonly used for determining which locations the UAV should visit are ill-suited for this task. We introduce a number of novel criteria that guide the UAV towards regions of strong anomalies by leveraging previously collected information in a mathematically elegant and computationally tractable manner. We demonstrate superiority of the proposed approach in several applications, including reconstruction of seafloor topography from real-world bathymetry data, as well as tracking of dynamic anomalies. A particularly attractive property of our approach is its ability to overcome adversarial conditions, that is, situations in which prior beliefs about the locations of the extremes are imprecise or erroneous.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here