InfoSSM: Interpretable Unsupervised Learning of Nonparametric State-Space Model for Multi-modal Dynamics

19 Sep 2018  ·  Young-Jin Park, Han-Lim Choi ·

The goal of system identification is to learn about underlying physics dynamics behind the time-series data. To model the probabilistic and nonparametric dynamics model, Gaussian process (GP) have been widely used; GP can estimate the uncertainty of prediction and avoid over-fitting. Traditional GPSSMs, however, are based on Gaussian transition model, thus often have difficulty in describing a more complex transition model, e.g. aircraft motions. To resolve the challenge, this paper proposes a framework using multiple GP transition models which is capable of describing multi-modal dynamics. Furthermore, we extend the model to the information-theoretic framework, the so-called InfoSSM, by introducing a mutual information regularizer helping the model to learn interpretable and distinguishable multiple dynamics models. Two illustrative numerical experiments in simple Dubins vehicle and high-fidelity flight simulator are presented to demonstrate the performance and interpretability of the proposed model. Finally, this paper introduces a framework using InfoSSM with Bayesian filtering for air traffic control tracking.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods