Effectively using full syntactic parsing information in Neural Networks (NNs) to solve relational tasks, e.g., question similarity, is still an open problem. In this paper, we propose to inject structural representations in NNs by (i) learning an SVM model using Tree Kernels (TKs) on relatively few pairs of questions (few thousands) as gold standard (GS) training data is typically scarce, (ii) predicting labels on a very large corpus of question pairs, and (iii) pre-training NNs on such large corpus... (read more)
PDF Abstract ACL 2018 PDF ACL 2018 AbstractMETHOD | TYPE | |
---|---|---|
![]() |
Non-Parametric Classification |