Injecting Relational Structural Representation in Neural Networks for Question Similarity

Effectively using full syntactic parsing information in Neural Networks (NNs) to solve relational tasks, e.g., question similarity, is still an open problem. In this paper, we propose to inject structural representations in NNs by (i) learning an SVM model using Tree Kernels (TKs) on relatively few pairs of questions (few thousands) as gold standard (GS) training data is typically scarce, (ii) predicting labels on a very large corpus of question pairs, and (iii) pre-training NNs on such large corpus. The results on Quora and SemEval question similarity datasets show that NNs trained with our approach can learn more accurate models, especially after fine tuning on GS.

PDF Abstract ACL 2018 PDF ACL 2018 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods