Inner-product Kernels are Asymptotically Equivalent to Binary Discrete Kernels

15 Sep 2019  ·  Zhenyu Liao, Romain Couillet ·

This article investigates the eigenspectrum of the inner product-type kernel matrix $\sqrt{p} \mathbf{K}=\{f( \mathbf{x}_i^{\sf T} \mathbf{x}_j/\sqrt{p})\}_{i,j=1}^n $ under a binary mixture model in the high dimensional regime where the number of data $n$ and their dimension $p$ are both large and comparable. Based on recent advances in random matrix theory, we show that, for a wide range of nonlinear functions $f$, the eigenspectrum behavior is asymptotically equivalent to that of an (at most) cubic function. This sheds new light on the understanding of nonlinearity in large dimensional problems. As a byproduct, we propose a simple function prototype valued in $ (-1,0,1) $ that, while reducing both storage memory and running time, achieves the same (asymptotic) classification performance as any arbitrary function $f$.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here