Input Perturbations for Adaptive Control and Learning

10 Nov 2018  ·  Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, George Michailidis ·

This paper studies adaptive algorithms for simultaneous regulation (i.e., control) and estimation (i.e., learning) of Multiple Input Multiple Output (MIMO) linear dynamical systems. It proposes practical, easy to implement control policies based on perturbations of input signals. Such policies are shown to achieve a worst-case regret that scales as the square-root of the time horizon, and holds uniformly over time. Further, it discusses specific settings where such greedy policies attain the information theoretic lower bound of logarithmic regret. To establish the results, recent advances on self-normalized martingales together with a novel method of policy decomposition are leveraged.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here