INSPECTRE: Privately Estimating the Unseen

We develop differentially private methods for estimating various distributional properties. Given a sample from a discrete distribution $p$, some functional $f$, and accuracy and privacy parameters $\alpha$ and $\varepsilon$, the goal is to estimate $f(p)$ up to accuracy $\alpha$, while maintaining $\varepsilon$-differential privacy of the sample. We prove almost-tight bounds on the sample size required for this problem for several functionals of interest, including support size, support coverage, and entropy. We show that the cost of privacy is negligible in a variety of settings, both theoretically and experimentally. Our methods are based on a sensitivity analysis of several state-of-the-art methods for estimating these properties with sublinear sample complexities.

PDF Abstract ICML 2018 PDF ICML 2018 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here