Instance-Dependent PU Learning by Bayesian Optimal Relabeling

7 Aug 2018  ·  Fengxiang He, Tongliang Liu, Geoffrey I. Webb, DaCheng Tao ·

When learning from positive and unlabelled data, it is a strong assumption that the positive observations are randomly sampled from the distribution of $X$ conditional on $Y = 1$, where X stands for the feature and Y the label. Most existing algorithms are optimally designed under the assumption. However, for many real-world applications, the observed positive examples are dependent on the conditional probability $P(Y = 1|X)$ and should be sampled biasedly. In this paper, we assume that a positive example with a higher $P(Y = 1|X)$ is more likely to be labelled and propose a probabilistic-gap based PU learning algorithms. Specifically, by treating the unlabelled data as noisy negative examples, we could automatically label a group positive and negative examples whose labels are identical to the ones assigned by a Bayesian optimal classifier with a consistency guarantee. The relabelled examples have a biased domain, which is remedied by the kernel mean matching technique. The proposed algorithm is model-free and thus do not have any parameters to tune. Experimental results demonstrate that our method works well on both generated and real-world datasets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here