Instance-Level Segmentation for Autonomous Driving with Deep Densely Connected MRFs

CVPR 2016  ·  Ziyu Zhang, Sanja Fidler, Raquel Urtasun ·

Our aim is to provide a pixel-wise instance-level labeling of a monocular image in the context of autonomous driving. We build on recent work [Zhang et al., ICCV15] that trained a convolutional neural net to predict instance labeling in local image patches, extracted exhaustively in a stride from an image... A simple Markov random field model using several heuristics was then proposed in [Zhang et al., ICCV15] to derive a globally consistent instance labeling of the image. In this paper, we formulate the global labeling problem with a novel densely connected Markov random field and show how to encode various intuitive potentials in a way that is amenable to efficient mean field inference [Kr\"ahenb\"uhl et al., NIPS11]. Our potentials encode the compatibility between the global labeling and the patch-level predictions, contrast-sensitive smoothness as well as the fact that separate regions form different instances. Our experiments on the challenging KITTI benchmark [Geiger et al., CVPR12] demonstrate that our method achieves a significant performance boost over the baseline [Zhang et al., ICCV15]. read more

PDF Abstract CVPR 2016 PDF CVPR 2016 Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here