Integrated Satellite-HAP-Terrestrial Networks for Dual-Band Connectivity

6 Jul 2021  ·  Wenwei Zhang, Ruoqi Deng, Boya Di, Lingyang Song ·

The recent development of high-altitude platforms (HAPs) has attracted increasing attention since they can serve as a promising communication method to assist satellite-terrestrial networks. In this paper, we consider an integrated three-layer satellite-HAP-terrestrial network where the HAP support dual-band connectivity. Specifically, the HAP can not only communicate with terrestrial users over C-band directly, but also provide backhaul services to terrestrial user terminals over Ka-band. We formulate a sum-rate maximization problem and then propose a fractional programming based algorithm to solve the problem by optimizing the bandwidth and power allocation iteratively. The closed-form optimal solutions for bandwidth allocation and power allocation in each iteration are also derived. Simulation results show the capacity enhancement brought by the dual-band connectivity of the HAP. The influence of the power of the HAP and the power of the satellite is also discussed.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here