Integrating Lexical Information into Entity Neighbourhood Representations for Relation Prediction

NAACL 2021  ·  Ian Wood, Mark Johnson, Stephen Wan ·

Relation prediction informed from a combination of text corpora and curated knowledge bases, combining knowledge graph completion with relation extraction, is a relatively little studied task. A system that can perform this task has the ability to extend an arbitrary set of relational database tables with information extracted from a document corpus. OpenKi[1] addresses this task through extraction of named entities and predicates via OpenIE tools then learning relation embeddings from the resulting entity-relation graph for relation prediction, outperforming previous approaches. We present an extension of OpenKi that incorporates embeddings of text-based representations of the entities and the relations. We demonstrate that this results in a substantial performance increase over a system without this information.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here