Integration of LiDAR and Hyperspectral Data for Land-cover Classification: A Case Study

9 Jul 2017  ·  Pedram Ghamisi, Gabriele Cavallaro, Dan, Wu, Jon Atli Benediktsson, Antonio Plaza ·

In this paper, an approach is proposed to fuse LiDAR and hyperspectral data, which considers both spectral and spatial information in a single framework. Here, an extended self-dual attribute profile (ESDAP) is investigated to extract spatial information from a hyperspectral data set... To extract spectral information, a few well-known classifiers have been used such as support vector machines (SVMs), random forests (RFs), and artificial neural networks (ANNs). The proposed method accurately classify the relatively volumetric data set in a few CPU processing time in a real ill-posed situation where there is no balance between the number of training samples and the number of features. The classification part of the proposed approach is fully-automatic. read more

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here