Modified Vector Quantization for Small-Cell Access Point Placement with Inter-Cell Interference

5 Nov 2020  ·  Govind R. Gopal, Elina Nayebi, Gabriel Porto Villardi, Bhaskar D. Rao ·

In this paper, we explore the small-cell uplink access point (AP) placement problem in the context of throughput-optimality and provide solutions while taking into consideration inter-cell interference. First, we briefly review the vector quantization (VQ) approach and related single user throughput-optimal formulations for AP placement. Then, we investigate the small-cell case with multiple users and expose the limitations of mean squared error based VQ for solving this problem. While the Lloyd algorithm from the VQ approach is found not to strictly solve the small-cell case, based on the tractability and quality of resulting AP placement, we deem it suitable as a simple and appropriate framework to solve more complicated problems. Accordingly, to minimize ICI and consequently enhance achievable throughput, we design two Lloyd-type algorithms, namely, the Interference Lloyd algorithm and the Inter-AP Lloyd algorithm, both of which incorporate ICI in their distortion functions. Simulation results show that both of the proposed algorithms provide superior 95\%-likely rate over the traditional Lloyd algorithm and the Inter-AP Lloyd algorithm yields a significant increase of up to 36.34\% in achievable rate over the Lloyd algorithm.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here