Paper

Online SuBmodular + SuPermodular (BP) Maximization with Bandit Feedback

We investigate non-modular function maximization in an online setting with $m$ users. The optimizer maintains a set $S_q$ for each user $q \in \{1, \ldots, m\}$. At round $i$, a user with unknown utility $h_q$ arrives; the optimizer selects a new item to add to $S_q$, and receives a noisy marginal gain. The goal is to minimize regret compared to an $\alpha$-approximation to the optimal full-knowledge selection (i.e., $\alpha$-regret). Prior works study this problem under a submodularity assumption for all $h_q$. However, this is not ideally amenable to applications, e.g., movie recommendations, that involve complementarity between items, where e.g., watching the first movie in a series enhances the impression of watching the sequels. Hence, we consider objectives $h_q$, called \textit{BP functions}, that decompose into the sum of monotone submodular $f_q$ and supermodular $g_q$; here, $g_q$ naturally models complementarity. Under different feedback assumptions, we develop UCB-style algorithms that use Nystrom sampling for computational efficiency. For these, we provide sublinear $\alpha$-regret guarantees for $\alpha = 1/\kappa_{f} [1 - e^{-(1 - \kappa^g) \kappa_{f}} ]$, and $\alpha = \min\{1 - \kappa_f/e, 1 - \kappa^g\}$; here, $\kappa_f, \kappa^g$ are submodular and supermodular curvatures. Furthermore, we provide similar $\alpha$-regret guarantees for functions that are almost submodular where $\alpha$ is parameterized by the submodularity ratio of the objective functions. We numerically validate our algorithms for movie recommendation on the MovieLens dataset and selection of training subsets for classification tasks.

Results in Papers With Code
(↓ scroll down to see all results)