InterActive: Inter-Layer Activeness Propagation

An increasing number of computer vision tasks can be tackled with deep features, which are the intermediate outputs of a pre-trained Convolutional Neural Network. Despite the astonishing performance, deep features extracted from low-level neurons are still below satisfaction, arguably because they cannot access the spatial context contained in the higher layers. In this paper, we present InterActive, a novel algorithm which computes the activeness of neurons and network connections. Activeness is propagated through a neural network in a top-down manner, carrying high-level context and improving the descriptive power of low-level and mid-level neurons. Visualization indicates that neuron activeness can be interpreted as spatial-weighted neuron responses. We achieve state-of-the-art classification performance on a wide range of image datasets.

PDF Abstract CVPR 2016 PDF CVPR 2016 Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here