Interactive Submodular Bandit

NeurIPS 2017 Lin ChenAndreas KrauseAmin Karbasi

In many machine learning applications, submodular functions have been used as a model for evaluating the utility or payoff of a set such as news items to recommend, sensors to deploy in a terrain, nodes to influence in a social network, to name a few. At the heart of all these applications is the assumption that the underlying utility/payoff function is known a priori, hence maximizing it is in principle possible... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.