Interactively Test Driving an Object Detector: Estimating Performance on Unlabeled Data

21 Jun 2014Rushil AnirudhPavan Turaga

In this paper, we study the problem of `test-driving' a detector, i.e. allowing a human user to get a quick sense of how well the detector generalizes to their specific requirement. To this end, we present the first system that estimates detector performance interactively without extensive ground truthing using a human in the loop... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet