Intermediate Deep Feature Compression: the Next Battlefield of Intelligent Sensing

17 Sep 2018  ·  Zhuo Chen, Weisi Lin, Shiqi Wang, Ling-Yu Duan, Alex C. Kot ·

The recent advances of hardware technology have made the intelligent analysis equipped at the front-end with deep learning more prevailing and practical. To better enable the intelligent sensing at the front-end, instead of compressing and transmitting visual signals or the ultimately utilized top-layer deep learning features, we propose to compactly represent and convey the intermediate-layer deep learning features of high generalization capability, to facilitate the collaborating approach between front and cloud ends. This strategy enables a good balance among the computational load, transmission load and the generalization ability for cloud servers when deploying the deep neural networks for large scale cloud based visual analysis. Moreover, the presented strategy also makes the standardization of deep feature coding more feasible and promising, as a series of tasks can simultaneously benefit from the transmitted intermediate layers. We also present the results for evaluation of lossless deep feature compression with four benchmark data compression methods, which provides meaningful investigations and baselines for future research and standardization activities.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here