Axiomatic Interpretability for Multiclass Additive Models

22 Oct 2018  ·  Xuezhou Zhang, Sarah Tan, Paul Koch, Yin Lou, Urszula Chajewska, Rich Caruana ·

Generalized additive models (GAMs) are favored in many regression and binary classification problems because they are able to fit complex, nonlinear functions while still remaining interpretable. In the first part of this paper, we generalize a state-of-the-art GAM learning algorithm based on boosted trees to the multiclass setting, and show that this multiclass algorithm outperforms existing GAM learning algorithms and sometimes matches the performance of full complexity models such as gradient boosted trees. In the second part, we turn our attention to the interpretability of GAMs in the multiclass setting. Surprisingly, the natural interpretability of GAMs breaks down when there are more than two classes. Naive interpretation of multiclass GAMs can lead to false conclusions. Inspired by binary GAMs, we identify two axioms that any additive model must satisfy in order to not be visually misleading. We then develop a technique called Additive Post-Processing for Interpretability (API), that provably transforms a pre-trained additive model to satisfy the interpretability axioms without sacrificing accuracy. The technique works not just on models trained with our learning algorithm, but on any multiclass additive model, including multiclass linear and logistic regression. We demonstrate the effectiveness of API on a 12-class infant mortality dataset.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods