Interpretable Distance Metric Learning for Handwritten Chinese Character Recognition

17 Mar 2021  ·  Boxiang Dong, Aparna S. Varde, Danilo Stevanovic, Jiayin Wang, Liang Zhao ·

Handwriting recognition is of crucial importance to both Human Computer Interaction (HCI) and paperwork digitization. In the general field of Optical Character Recognition (OCR), handwritten Chinese character recognition faces tremendous challenges due to the enormously large character sets and the amazing diversity of writing styles. Learning an appropriate distance metric to measure the difference between data inputs is the foundation of accurate handwritten character recognition. Existing distance metric learning approaches either produce unacceptable error rates, or provide little interpretability in the results. In this paper, we propose an interpretable distance metric learning approach for handwritten Chinese character recognition. The learned metric is a linear combination of intelligible base metrics, and thus provides meaningful insights to ordinary users. Our experimental results on a benchmark dataset demonstrate the superior efficiency, accuracy and interpretability of our proposed approach.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here