Interpretation of Semantic Tweet Representations

4 Apr 2017J GaneshManish GuptaVasudeva Varma

Research in analysis of microblogging platforms is experiencing a renewed surge with a large number of works applying representation learning models for applications like sentiment analysis, semantic textual similarity computation, hashtag prediction, etc. Although the performance of the representation learning models has been better than the traditional baselines for such tasks, little is known about the elementary properties of a tweet encoded within these representations, or why particular representations work better for certain tasks... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet