Interpreting Convolutional Neural Networks Through Compression

7 Nov 2017  ·  Reza Abbasi-Asl, Bin Yu ·

Convolutional neural networks (CNNs) achieve state-of-the-art performance in a wide variety of tasks in computer vision. However, interpreting CNNs still remains a challenge. This is mainly due to the large number of parameters in these networks. Here, we investigate the role of compression and particularly pruning filters in the interpretation of CNNs. We exploit our recently-proposed greedy structural compression scheme that prunes filters in a trained CNN. In our compression, the filter importance index is defined as the classification accuracy reduction (CAR) of the network after pruning that filter. The filters are then iteratively pruned based on the CAR index. We demonstrate the interpretability of CAR-compressed CNNs by showing that our algorithm prunes filters with visually redundant pattern selectivity. Specifically, we show the importance of shape-selective filters for object recognition, as opposed to color-selective filters. Out of top 20 CAR-pruned filters in AlexNet, 17 of them in the first layer and 14 of them in the second layer are color-selective filters. Finally, we introduce a variant of our CAR importance index that quantifies the importance of each image class to each CNN filter. We show that the most and the least important class labels present a meaningful interpretation of each filter that is consistent with the visualized pattern selectivity of that filter.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods