Interpreting the Latent Space of GANs for Semantic Face Editing

Despite the recent advance of Generative Adversarial Networks (GANs) in high-fidelity image synthesis, there lacks enough understanding of how GANs are able to map a latent code sampled from a random distribution to a photo-realistic image. Previous work assumes the latent space learned by GANs follows a distributed representation but observes the vector arithmetic phenomenon... (read more)

PDF Abstract CVPR 2020 PDF CVPR 2020 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper