Intrinsic Geometric Information Transfer Learning on Multiple Graph-Structured Datasets

15 Nov 2016 Jaekoo Lee Hyunjae Kim Jongsun Lee Sungroh Yoon

Graphs provide a powerful means for representing complex interactions between entities. Recently, deep learning approaches are emerging for representing and modeling graph-structured data, although the conventional deep learning methods (such as convolutional neural networks and recurrent neural networks) have mainly focused on grid-structured inputs (image and audio)... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet