Intuitively Assessing ML Model Reliability through Example-Based Explanations and Editing Model Inputs

17 Feb 2021  ·  Harini Suresh, Kathleen M. Lewis, John V. Guttag, Arvind Satyanarayan ·

Interpretability methods aim to help users build trust in and understand the capabilities of machine learning models. However, existing approaches often rely on abstract, complex visualizations that poorly map to the task at hand or require non-trivial ML expertise to interpret. Here, we present two visual analytics modules that facilitate an intuitive assessment of model reliability. To help users better characterize and reason about a model's uncertainty, we visualize raw and aggregate information about a given input's nearest neighbors. Using an interactive editor, users can manipulate this input in semantically-meaningful ways, determine the effect on the output, and compare against their prior expectations. We evaluate our interface using an electrocardiogram beat classification case study. Compared to a baseline feature importance interface, we find that 14 physicians are better able to align the model's uncertainty with domain-relevant factors and build intuition about its capabilities and limitations.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here