A Group-Theoretic Framework for Data Augmentation

25 Jul 2019Shuxiao ChenEdgar DobribanJane H Lee

Data augmentation is a widely used trick when training deep neural networks: in addition to the original data, properly transformed data are also added to the training set. However, to the best of our knowledge, a clear mathematical framework to explain the performance benefits of data augmentation is not available... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet