Invariant Representations from Adversarially Censored Autoencoders

21 May 2018Ye WangToshiaki Koike-AkinoDeniz Erdogmus

We combine conditional variational autoencoders (VAE) with adversarial censoring in order to learn invariant representations that are disentangled from nuisance/sensitive variations. In this method, an adversarial network attempts to recover the nuisance variable from the representation, which the VAE is trained to prevent... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet