An invertible crystallographic representation for general inverse design of inorganic crystals with targeted properties

Realizing general inverse design could greatly accelerate the discovery of new materials with user-defined properties. However, state-of-the-art generative models tend to be limited to a specific composition or crystal structure. Herein, we present a framework capable of general inverse design (not limited to a given set of elements or crystal structures), featuring a generalized invertible representation that encodes crystals in both real and reciprocal space, and a property-structured latent space from a variational autoencoder (VAE). In three design cases, the framework generates 142 new crystals with user-defined formation energies, bandgap, thermoelectric (TE) power factor, and combinations thereof. These generated crystals, absent in the training database, are validated by first-principles calculations. The success rates (number of first-principles-validated target-satisfying crystals/number of designed crystals) ranges between 7.1% and 38.9%. These results represent a significant step toward property-driven general inverse design using generative models, although practical challenges remain when coupled with experimental synthesis.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.