Inverse Extended Kalman Filter -- Part II: Highly Non-Linear and Uncertain Systems

13 Aug 2022  ·  Himali Singh, Arpan Chattopadhyay, Kumar Vijay Mishra ·

Counter-adversarial system design problems have lately motivated the development of inverse Bayesian filters. For example, inverse Kalman filter (I-KF) has been recently formulated to estimate the adversary's Kalman-filter-tracked estimates and hence, predict the adversary's future steps. The purpose of this paper and the companion paper (Part I) is to address the inverse filtering problem in non-linear systems by proposing an inverse extended Kalman filter (I-EKF). The companion paper proposed the theory of I-EKF (with and without unknown inputs) and I-KF (with unknown inputs). In this paper, we develop this theory for highly non-linear models, which employ second-order, Gaussian sum, and dithered forward EKFs. In particular, we derive theoretical stability guarantees for the inverse second-order EKF using the bounded non-linearity approach. To address the limitation of the standard I-EKFs that the system model and forward filter are perfectly known to the defender, we propose reproducing kernel Hilbert space-based EKF to learn the unknown system dynamics based on its observations, which can be employed as an inverse filter to infer the adversary's estimate. Numerical experiments demonstrate the state estimation performance of the proposed filters using recursive Cram\'{e}r-Rao lower bound as a benchmark.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here