Investigating Deep Neural Transformations for Spectrogram-based Musical Source Separation

2 Dec 2019Woosung ChoiMinseok KimJaehwa ChungDaewon LeeSoonyoung Jung

Musical Source Separation (MSS) is a signal processing task that tries to separate the mixed musical signal into each acoustic sound source, such as singing voice or drums. Recently many machine learning-based methods have been proposed for the MSS task, but there were no existing works that evaluate and directly compare various types of networks... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet