Investigating how well contextual features are captured by bi-directional recurrent neural network models

WS 2017  ·  Kushal Chawla, Sunil Kumar Sahu, Ashish Anand ·

Learning algorithms for natural language processing (NLP) tasks traditionally rely on manually defined relevant contextual features. On the other hand, neural network models using an only distributional representation of words have been successfully applied for several NLP tasks. Such models learn features automatically and avoid explicit feature engineering. Across several domains, neural models become a natural choice specifically when limited characteristics of data are known. However, this flexibility comes at the cost of interpretability. In this paper, we define three different methods to investigate ability of bi-directional recurrent neural networks (RNNs) in capturing contextual features. In particular, we analyze RNNs for sequence tagging tasks. We perform a comprehensive analysis on general as well as biomedical domain datasets. Our experiments focus on important contextual words as features, which can easily be extended to analyze various other feature types. We also investigate positional effects of context words and show how the developed methods can be used for error analysis.

PDF Abstract WS 2017 PDF WS 2017 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here