Investigating Robustness of Adversarial Samples Detection for Automatic Speaker Verification

11 Jun 2020  ·  Xu Li, Na Li, Jinghua Zhong, Xixin Wu, Xunying Liu, Dan Su, Dong Yu, Helen Meng ·

Recently adversarial attacks on automatic speaker verification (ASV) systems attracted widespread attention as they pose severe threats to ASV systems. However, methods to defend against such attacks are limited. Existing approaches mainly focus on retraining ASV systems with adversarial data augmentation. Also, countermeasure robustness against different attack settings are insufficiently investigated. Orthogonal to prior approaches, this work proposes to defend ASV systems against adversarial attacks with a separate detection network, rather than augmenting adversarial data into ASV training. A VGG-like binary classification detector is introduced and demonstrated to be effective on detecting adversarial samples. To investigate detector robustness in a realistic defense scenario where unseen attack settings may exist, we analyze various kinds of unseen attack settings' impact and observe that the detector is robust (6.27\% EER_{det} degradation in the worst case) against unseen substitute ASV systems, but it has weak robustness (50.37\% EER_{det} degradation in the worst case) against unseen perturbation methods. The weak robustness against unseen perturbation methods shows a direction for developing stronger countermeasures.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here