Investigating Speech Features for Continuous Turn-Taking Prediction Using LSTMs

29 Jun 2018  ·  Matthew Roddy, Gabriel Skantze, Naomi Harte ·

For spoken dialog systems to conduct fluid conversational interactions with users, the systems must be sensitive to turn-taking cues produced by a user. Models should be designed so that effective decisions can be made as to when it is appropriate, or not, for the system to speak. Traditional end-of-turn models, where decisions are made at utterance end-points, are limited in their ability to model fast turn-switches and overlap. A more flexible approach is to model turn-taking in a continuous manner using RNNs, where the system predicts speech probability scores for discrete frames within a future window. The continuous predictions represent generalized turn-taking behaviors observed in the training data and can be applied to make decisions that are not just limited to end-of-turn detection. In this paper, we investigate optimal speech-related feature sets for making predictions at pauses and overlaps in conversation. We find that while traditional acoustic features perform well, part-of-speech features generally perform worse than word features. We show that our current models outperform previously reported baselines.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here