Investigating ultrafast quantum magnetism with machine learning

20 Mar 2019  ·  G. Fabiani, J. H. Mentink ·

We investigate the efficiency of the recently proposed Restricted Boltzmann Machine (RBM) representation of quantum many-body states to study both the static properties and quantum spin dynamics in the two-dimensional Heisenberg model on a square lattice. For static properties we find close agreement with numerically exact Quantum Monte Carlo results in the thermodynamical limit. For dynamics and small systems, we find excellent agreement with exact diagonalization, while for larger systems close consistency with interacting spin-wave theory is obtained. In all cases the accuracy converges fast with the number of network parameters, giving access to much bigger systems than feasible before. This suggests great potential to investigate the quantum many-body dynamics of large scale spin systems relevant for the description of magnetic materials strongly out of equilibrium.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Strongly Correlated Electrons Mesoscale and Nanoscale Physics