Paper

Is Neuromorphic MNIST neuromorphic? Analyzing the discriminative power of neuromorphic datasets in the time domain

The advantage of spiking neural networks (SNNs) over their predecessors is their ability to spike, enabling them to use spike timing for coding and efficient computing. A neuromorphic dataset should allow a neuromorphic algorithm to clearly show that a SNN is able to perform better on the dataset than an ANN. We have analyzed both N-MNIST and N-Caltech101 along these lines, but focus our study on N-MNIST. First we evaluate if additional information is encoded in the time domain in a neuromoprhic dataset. We show that an ANN trained with backpropagation on frame based versions of N-MNIST and N-Caltech101 images achieve 99.23% and 78.01% accuracy. These are the best classification accuracies obtained on these datasets to date. Second we present the first unsupervised SNN to be trained on N-MNIST and demonstrate results of 91.78%. We also use this SNN for further experiments on N-MNIST to show that rate based SNNs perform better, and precise spike timings are not important in N-MNIST. N-MNIST does not, therefore, highlight the unique ability of SNNs. The conclusion of this study opens an important question in neuromorphic engineering - what, then, constitutes a good neuromorphic dataset?

Results in Papers With Code
(↓ scroll down to see all results)