Is Vanilla Policy Gradient Overlooked? Analyzing Deep Reinforcement Learning for Hanabi

22 Mar 2022  ·  Bram Grooten, Jelle Wemmenhove, Maurice Poot, Jim Portegies ·

In pursuit of enhanced multi-agent collaboration, we analyze several on-policy deep reinforcement learning algorithms in the recently published Hanabi benchmark. Our research suggests a perhaps counter-intuitive finding, where Proximal Policy Optimization (PPO) is outperformed by Vanilla Policy Gradient over multiple random seeds in a simplified environment of the multi-agent cooperative card game. In our analysis of this behavior we look into Hanabi-specific metrics and hypothesize a reason for PPO's plateau. In addition, we provide proofs for the maximum length of a perfect game (71 turns) and any game (89 turns). Our code can be found at: https://github.com/bramgrooten/DeepRL-for-Hanabi

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here