"Is your explanation stable?": A Robustness Evaluation Framework for Feature Attribution

5 Sep 2022  ·  Yuyou Gan, Yuhao Mao, Xuhong Zhang, Shouling Ji, Yuwen Pu, Meng Han, Jianwei Yin, Ting Wang ·

Understanding the decision process of neural networks is hard. One vital method for explanation is to attribute its decision to pivotal features. Although many algorithms are proposed, most of them solely improve the faithfulness to the model. However, the real environment contains many random noises, which may leads to great fluctuations in the explanations. More seriously, recent works show that explanation algorithms are vulnerable to adversarial attacks. All of these make the explanation hard to trust in real scenarios. To bridge this gap, we propose a model-agnostic method \emph{Median Test for Feature Attribution} (MeTFA) to quantify the uncertainty and increase the stability of explanation algorithms with theoretical guarantees. MeTFA has the following two functions: (1) examine whether one feature is significantly important or unimportant and generate a MeTFA-significant map to visualize the results; (2) compute the confidence interval of a feature attribution score and generate a MeTFA-smoothed map to increase the stability of the explanation. Experiments show that MeTFA improves the visual quality of explanations and significantly reduces the instability while maintaining the faithfulness. To quantitatively evaluate the faithfulness of an explanation under different noise settings, we further propose several robust faithfulness metrics. Experiment results show that the MeTFA-smoothed explanation can significantly increase the robust faithfulness. In addition, we use two scenarios to show MeTFA's potential in the applications. First, when applied to the SOTA explanation method to locate context bias for semantic segmentation models, MeTFA-significant explanations use far smaller regions to maintain 99\%+ faithfulness. Second, when tested with different explanation-oriented attacks, MeTFA can help defend vanilla, as well as adaptive, adversarial attacks against explanations.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.