ISIKUN at the FinCausal 2020: Linguistically informed Machine-learning Approach for Causality Identification in Financial Documents

This paper presents our participation to the FinCausal-2020 Shared Task whose ultimate aim is to extract cause-effect relations from a given financial text. Our participation includes two systems for the two sub-tasks of the FinCausal-2020 Shared Task. The first sub-task (Task-1) consists of the binary classification of the given sentences as causal meaningful (1) or causal meaningless (0). Our approach for the Task-1 includes applying linear support vector machines after transforming the input sentences into vector representations using term frequency-inverse document frequency scheme with 3-grams. The second sub-task (Task-2) consists of the identification of the cause-effect relations in the sentences, which are detected as causal meaningful. Our approach for the Task-2 is a CRF-based model which uses linguistically informed features. For the Task-1, the obtained results show that there is a small difference between the proposed approach based on linear support vector machines (F-score 94%) , which requires less time compared to the BERT-based baseline (F-score 95%). For the Task-2, although a minor modifications such as the learning algorithm type and the feature representations are made in the conditional random fields based baseline (F-score 52%), we have obtained better results (F-score 60%). The source codes for the both tasks are available online (

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here