Adversarial Rain Attack and Defensive Deraining for DNN Perception

19 Sep 2020  ·  Liming Zhai, Felix Juefei-Xu, Qing Guo, Xiaofei Xie, Lei Ma, Wei Feng, Shengchao Qin, Yang Liu ·

Rain often poses inevitable threats to deep neural network (DNN) based perception systems, and a comprehensive investigation of the potential risks of the rain to DNNs is of great importance. However, it is rather difficult to collect or synthesize rainy images that can represent all rain situations that would possibly occur in the real world. To this end, in this paper, we start from a new perspective and propose to combine two totally different studies, i.e., rainy image synthesis and adversarial attack. We first present an adversarial rain attack, with which we could simulate various rain situations with the guidance of deployed DNNs and reveal the potential threat factors that can be brought by rain. In particular, we design a factor-aware rain generation that synthesizes rain streaks according to the camera exposure process and models the learnable rain factors for adversarial attack. With this generator, we perform the adversarial rain attack against the image classification and object detection. To defend the DNNs from the negative rain effect, we also present a defensive deraining strategy, for which we design an adversarial rain augmentation that uses mixed adversarial rain layers to enhance deraining models for downstream DNN perception. Our large-scale evaluation on various datasets demonstrates that our synthesized rainy images with realistic appearances not only exhibit strong adversarial capability against DNNs, but also boost the deraining models for defensive purposes, building the foundation for further rain-robust perception studies.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here