Iterative Forward Tuning Boosts In-context Learning in Language Models

22 May 2023  ·  Jiaxi Yang, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, Yongbin Li ·

Large language models (LLMs) have exhibited an emergent in-context learning (ICL) ability. However, the ICL models that can solve ordinary cases are hardly extended to solve more complex tasks by processing the demonstration examples once. This single-turn ICL is incoordinate with the decision making process of humans by learning from analogy. In this paper, we propose an effective and efficient two-stage framework to boost ICL in LLMs by exploiting a dual form between Transformer attention and gradient descent-based optimization. Concretely, we divide the ICL process into "Deep-Thinking" and inference stages. The "Deep-Thinking" stage performs iterative forward optimization of demonstrations, which is expected to boost the reasoning abilities of LLMs at test time by "thinking" demonstrations multiple times. It produces accumulated meta-gradients by manipulating the Key-Value matrices in the self-attention modules of the Transformer. Then, the inference stage only takes the test query as input without concatenating demonstrations and applies the learned meta-gradients through attention for output prediction. In this way, demonstrations are not required during the inference stage since they are already learned and stored in the definitive meta-gradients. LLMs can be effectively and efficiently adapted to downstream tasks. Extensive experiments on ten classification and multiple-choice datasets show that our method achieves substantially better performance than standard ICL in terms of both accuracy and efficiency.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods