Iterative hypothesis testing for multi-object tracking in presence of features with variable reliability

1 Sep 2015Amit Kumar K. C.Damien DelannayChristophe De Vleeschouwer

This paper assumes prior detections of multiple targets at each time instant, and uses a graph-based approach to connect those detections across time, based on their position and appearance estimates. In contrast to most earlier works in the field, our framework has been designed to exploit the appearance features, even when they are only sporadically available, or affected by a non-stationary noise, along the sequence of detections... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet