Iterative Learning for Reliable Crowdsourcing Systems

Crowdsourcing systems, in which tasks are electronically distributed to numerous ``information piece-workers'', have emerged as an effective paradigm for human-powered solving of large scale problems in domains such as image classification, data entry, optical character recognition, recommendation, and proofreading. Because these low-paid workers can be unreliable, nearly all crowdsourcers must devise schemes to increase confidence in their answers, typically by assigning each task multiple times and combining the answers in some way such as majority voting... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet