Iterative Thresholding for Demixing Structured Superpositions in High Dimensions

23 Jan 2017  ·  Mohammadreza Soltani, Chinmay Hegde ·

We consider the demixing problem of two (or more) high-dimensional vectors from nonlinear observations when the number of such observations is far less than the ambient dimension of the underlying vectors. Specifically, we demonstrate an algorithm that stably estimate the underlying components under general \emph{structured sparsity} assumptions on these components. Specifically, we show that for certain types of structured superposition models, our method provably recovers the components given merely $n = \mathcal{O}(s)$ samples where $s$ denotes the number of nonzero entries in the underlying components. Moreover, our method achieves a fast (linear) convergence rate, and also exhibits fast (near-linear) per-iteration complexity for certain types of structured models. We also provide a range of simulations to illustrate the performance of the proposed algorithm.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here